A New 10-Hydroxyl Anthrone Glycoside from Cassia siamea Lam.

Tai Sheng L $\ddot{\mathrm{U}}^{1}$ *, Yang Hua YI 2 , Zhi Guo ZHANG 1 , Zhao Qin ZHANG 1 , Nan HUA 1

¹Pharmacy Department of the 88th Hospital of PLA, Taian, Shandong 271000 ²Center of Marine Drug Research, School of Pharmacy, Second Military Medical University, Shanghai 200433

Abstract: A new 10-hydroxyl anthrone glycoside, 1, 8, 10 - trihydroxyl-1–O– β –D–glucopyranosyl-3-methyl-10- C (S) – β – D- glucopyranosyl-anthrone-9 **1** was isolated from the stem of *Cassia siamea* Lam. The structure was elucidated by spectral evidences, especially by 2 D techniques.

Keywords: *Cassia siamea*, anthrone, 1, 8, 10 -trihydroxyl-1-O-β-D-glucopyranosyl-3-methyl-10-C (S) -β-D- glucopyranosyl-anthrone-9 **1**.

Formerly we have reported the isolation of a chromone glycoside¹. Here we report the isolation and structural elucidation of a 10-hydroxyl anthrone glycoside, which was the new natural product, 1, 8, 10 - trihydroxyl-1 - O $-\beta$ - D -glucopyranosyl -3-methyl -10-C (S) $-\beta$ - D- glucopyranosyl-anthrone-9 **1** from the stem of *Cassia siamea* Lam.

Figure 1 HMBC and NOESY correlations of compound 1

Compound **1**, yellow solid, mp 138-139°C, the UV λ_{max} nm (MeOH) (log \in): 207(5.26), 268(3.76), 301(4.09), 360(4.03); IR KBr vcm⁻¹: 3408, 2924, 1632, 1606, 1572, 1485, 1452, 1294; revealed strong resemblance to those of 10-hydroxyaloin B². H and ¹³CNMR data of **1** are listed in **Table 1**. FAB-MS: 580[M⁺]; thus the molecular formula of **1** was suggested to be C₂₇H₃₂O₁₄. Based on the above^{2, 3} evidences, **1** was a typical anthrone.

Table 1 ¹H-NMR (300 MHz) and ¹³C-NMR (75 MHz) spectral data of **1** in CD₃OD-d₄

С	$\delta_{\rm C}({\rm ppm})$	Н	$\delta_{\rm H}({\rm ppm})$	J (Hz)
1	158.8			
2	120.1	2	7.30(brs)	
3	147.8			
4	121.8	4	7.62(brs)	
5	118.0	5	7.35(d)	7.6
6	135.3	6	7.52(t)	7.6, 8.3
7	117.9	7	6.92(d)	8.3
8	161.5			
9	191.5			
10	76.9			
11	144.8			
12	119.8			
13	121.4			
14	149.4			
15	22.3	15	2.45(s)	
O-Glu-1'	105.2	1'	4.92(d)	7.5
2'	75.0	2'	3.58(m)	
3'	77.2	3'	3.55(m)	
4'	71.4	4'	3.50(m)	
5'	78.6	5′	3.52(m)	
6′	62.6	6'a	3.91(m)	
		6'b	3.73(m)	
C-Glu-1"	83.8	1"	3.18(d)	9.4
2"	71.6	2"	2.80(m)	
3"	79.4	3"	3.29(m)	
4"	73.1	4"	2.98(m)	
5"	81.5	5"	2.90(m)	
6 "	63.3	6″a	3.32(m)	
		6 ″ b	3.52(m)	

In its 1 HNMR spectrum, the signal at δ 2.45(s, 3H) suggested the presence of methyl group connected with a benzene ring. The aromatic proton signals at δ_H 7.30 (brs), 7.62 (brs) indicated the presence of a *m*-substitued benzene ring. In its HMBC, the correlation between δ_H 2.45(s, 3H) and δ_C 120.1(C-2), δ_H 2.45(s, 3H) and δ_C 121.8 (C-4) indicated that the methyl group was connected to C-3 position, and it was confirmed by its NOESY spectrum. And the signals at δ_H 6.92 (d, 1H, J=8.3), 7.35 (d, 1H, J=7.6), 7.52 (dd, 1H, J=7.6, 8.3) were due to H-7, H-5 and H-6 of the anthrone respectively.

Twelve signals in DEPT spectrum ranged from δ_C 105.2 to 62.7, together with the signals of anomeric proton δ_H 3.18 (d, J=9.5) and δ_H 4.92 (d, J=7.5) in 1HNMR suggested the presence of two β -D-glucoses. And from the chemical shift of the anomeric carbon

of the glucoses (δ_C 83.8, δ_C 105.2), it could be concluded that one glucose formed O-glucoside and the other formed C-glucoside.

A quaternary carbon at δ_C 76.9 (10-C) was observed in DEPT, according to the reference^{2,3}, it could be confirmed that one of the β -D-glucose and a hydroxyl group all attached at the C-10 position and formed C-glucoside. The correlation of δ_H 3.18 (H-1") and δ_C 144.8 (C-11) and 149.4 (C-14) in HMBC is the further evidence for the formation of C-glucoside. The other anomeric proton at δ_H 4.92 (H-1') exhibited the correlation with δ_C 158.8 (C-1) suggesting the connection of O-glucoside at C-1.

The absolute configuration of C-10 for $\bf 1$ was S, as 10-hydroxyaloin B, comparing the CD spectrum of compound $\bf 1$ with that of 10-hydroxyaloin $B^{4,5}$.

So, the structure of compound 1 was elucidated as 1, 8, 10 - trihydroxyl-1-O- β -D-glucopyranosyl -3-methyl-10- C (S) - β - D- glucopyranosyl-anthrone-9 1.

References

- 1. T. S. Lü, Y. H. Yi, S. L. Mao, et al., Chinese Chemical Letters, 2001, 12 (8), 703.
- 2. D. Ermias, V. W. Ben-erik, S. Dvid, et al., Pytochemistry, 1996, 42 (6), 1683.
- 3. H. W. Rauwald, K. Lohse, Planta Med., 1992, 58, 259
- 4. P. Manitto, D. Monti, G. Speranza, et al., J. Chem. Soc. Perkin Trans. 1, 1993, 1577.
- 5. P. Manitto, D. Monti, G. Speranza, J. Nat. Prod., 1995, 58 (3), 419.

Received 24 October, 2001